دسته : سمینار برق
فرمت فایل : pdf
حجم فایل : 613 KB
تعداد صفحات : 65
بازدیدها : 250
برچسبها : پروژه تحقیق مبانی نظری
مبلغ : 10000 تومان
خرید این فایلسمینار برق بررسی الگوریتم بهینه سازی و انواع کاربردهای آن
چکیده
در این سمینار الگوریتم جستجوی محلی Simulated Annealing,SA (پخت شبیه سازی شده) را معرفی کرده و جزئیات، مزایا، معایب و کاربردهای آن را مورد بررسی قرار خواهیم داد به طوری که روش های توسعه یافته این الگوریتم نیز به اجمال معرفی می شوند. سپس اهمیت تعیین مشخصات مدارات الکترونیکی (Circuit Sizing) را با انواع روش های موجود برای این کار را مورد بررسی و مقایسه قرار می دهیم. برنامه ریزی هندسی و روش های بر پایه شبیه سازی معروف ترین استراتژی هایی هستند که برای تعیین مشخصات مدار به منظور بهینه سازی آنها به کار می روند که در ادامه با توجه به ضرورت بهینه سازی بلوک های جمع کننده و ضرب کننده که عنصر اصلی در مدارات دیجیتال می باشند، روش SA را به عنوان یک الگوریتم ساده و با قابلیت یافتن نقطه بهینه در کل برای حداقل شدن توان مصرفی و تاخیر در این بلوک ها، انتخاب می کنیم.
مقدمه
جستجو برای یافتن خواسته های مطلوب و بهینه از میان گزینه های قابل انتخاب جزء مسائلی است که بشر همواره با آن مواجه بوده است. در زندگی روزمره نیز به کرات با چنین مسائلی مواجه هستیم مانند: انتخاب یک محل مناسب برای زندگی، تنظیم جدول زمانی برای امتحانات سراسری، یافتن بهترین مسیر برای مسافرت با وسیله نقلیه، حرکت مناسب در بازی شطرنج و… نه تنها در زندگی روزمره بلکه در انواع مسائل مهندسی، معماری، مالی، اقتصادی، تحقیقات اپراتوری، پزشکی، نظامی و… به نوعی با مسائل بهینه سازی مواجه هستیم.
در تمام مسائل جستجو واضح است که یافتن یک حل ممکن برای مسئله بسیار آسان تر از یافتن بهترین حل می باشد. محدودیت ها در یافتن بهترین جواب ناشی از زمان، منابع در دسترس، پیچیدگی طبیعی خواسته های بهینه سازی و کثرت گزینه های قابل انتخاب می باشد.
در بعضی از مسائل بهینه سازی باید عملیات جستجو به نحوی انجام شود که چندین تابع هزینه باهم بهینه شوند (Multi objective). همچنین محدودیت ها و قیودات مختلفی بسته به نوع مسئله وجود دارد به عنوان مثال برای تنظیم بهینه جدول زمانی امتحانات یک دانشگاه چندین موضوع باید در نظر گرفته شود مانند: تعداد دانشجویانی که امتحانات پشت سرهم دارند، تعداد دانشجویانی که بیشتر از یک امتحان در یک روز دارند، حداکثر زمان مشخص شده برای کل امتحانات، حداکثر اتاق های قابل استفاده، تعداد مراقبان امتحانات و… بدون شک پیدا کردن جوابی که تمام خواسته ها و محدودیت ها را برآورده کند کاری بسیار مشکل می باشد.
برای یافتن بهترین جواب باید بیشترین جستجو را انجام داد این خود باعث صرف شدن زمان زیاد و تلاش محاسباتی (effort) حجیم می شود. در مسائل بهینه سازی باید مصالحه ای بین کیفیت جواب و زمان و تلاش محاسباتی برقرار شود. چنانچه محدودیت کمی برای زمان و تلاش محاسباتی وجود داشته باشد می توانیم بیشترین جستجو را انجام دهیم یعنی فضاهای جستجو را به اندازه ممکن بزرگ در نظر گرفته و نقاط بیشتری را از یک فضای مشخص به عنوان حل های ممکن در نظر بگیریم. اما چنانچه محدودیت های ما بر روی زمان و تلاش محاسباتی زیاد باشد نمی توانیم همه نقاط ممکن را جستجو کنیم در نتیجه برای رسیدن به جواب مناسب باید روشی را پیدا کنیم که به سمت جواب های بهتر هدایت شویم. در واقع به جای جستجوی همه نقاط ممکن (explore) باید اطلاعات به دست آورده از جستجوهای قبلی را طوری تحلیل کنیم تا به سمت نقاط بهتر هدایت شویم (exploite). البته این عمل در بعضی از مسائل بسیار مشکل می باشد.
خرید و دانلود آنی فایل